Sepsis-induced lung injury in rats increases alveolar epithelial vulnerability to stretch.
نویسندگان
چکیده
OBJECTIVE Previous in vitro models have shown that cellular deformation causes dose-dependent injury and death in healthy rat alveolar epithelial cells (AECs). We compared the viability of AECs from septic rats with those from nonseptic rats after 1 hr of cyclic equibiaxial stretch. We hypothesized that sepsis would increase stretch-induced cell death. DESIGN Laboratory investigation. SETTING University research laboratory. SUBJECTS Thirty-seven male Sprague-Dawley rats weighing 240-260 g. INTERVENTIONS Anesthetized rats were subjected to cecal ligation and double puncture (2CLP) or sham laparotomy without cecal ligation or puncture (sham). After 24 or 48 hrs, AECs were isolated, seeded in custom wells, and maintained in culture for 48 hrs before study. AECs were stretched cyclically (15/min) to a 0%, 12%, 25%, or 37% change in surface area (DeltaSA) for 1 hr. Cell viability, phenotypic markers, and nuclear factor-kappaB intracellular localization were assessed using fluorescent immunocytochemistry. MEASUREMENTS AND MAIN RESULTS Phase and fluorescent images were evaluated for all studies. Response to stretch was the same at 24 and 48 hrs after 2CLP. Relative to sham, 2CLP significantly increased cell death at 25 and 37% DeltaSA (p<.003, analysis of variance). Relative to sham, 2CLP did not alter expression of type I or type II phenotypic markers. Nuclear factor-kappaB within the nuclear compartment was observed after 2CLP in unstretched cells and after 1 hr of cyclic stretch at 37% DeltaSA. In sham, nuclear factor-kappaB within the nuclear compartment was seen only after stretch. CONCLUSIONS AECs isolated from septic rats are more vulnerable to mechanical deformation injury than AECs from nonseptic animals.
منابع مشابه
Sepsis Enhances Epithelial Permeability with Stretch in an Actin Dependent Manner
Ventilation of septic patients often leads to the development of edema and impaired gas exchange. We hypothesized that septic alveolar epithelial monolayers would experience stretch-induced barrier dysfunction at a lower magnitude of stretch than healthy alveolar epithelial monolayers. Alveolar epithelial cells were isolated from rats 24 hours after cecal ligation and double puncture (2CLP) or ...
متن کاملEffect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice
Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...
متن کاملProtective effect of S-nitrosoglutathione pretreatment on acute lung injury in septic rats
Objective(s): To investigate the protective effect of S-nitrosoglutathione (SNG) pretreatment on acute lung injury (ALI) in septic rats. Materials and Methods: We constructed a rat model of sepsis by cecal ligation and perforation (CLP), and randomly divided into Sham, CLP, and CLP+SNG (0.25 and 0.5 mg/kg) groups. We used H&E; staining an...
متن کاملGranulocyte/macrophage colony-stimulating factor treatment improves alveolar epithelial barrier function in alcoholic rat lung.
Chronic alcohol abuse increases the risk of developing acute lung injury approximately threefold in septic patients, and ethanol ingestion for 6 wk in rats impairs alveolar epithelial barrier function both in vitro and in vivo. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a trophic factor for the alveolar epithelium, and a recent phase II clinical study suggests that GM-CSF ther...
متن کاملAngiotensin II mediates glutathione depletion, transforming growth factor-beta1 expression, and epithelial barrier dysfunction in the alcoholic rat lung.
Alcohol abuse markedly increases the risk of sepsis-mediated acute lung injury. In a rat model, ethanol ingestion alone (in the absence of any other stress) causes pulmonary glutathione depletion, increased expression of transforming growth factor-beta1 (TGF-beta1), and alveolar epithelial barrier dysfunction, even though the lung appears grossly normal. However, during endotoxemia, ethanol-fed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Critical care medicine
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2006